Design Of A Decision Support System For The Provision Of Assistance To Small Medium Industry (Smi) At The Industrial And Trade Service Of Bengkulu Province Using The Topsis Method

Perancangan Sistem Pendukung Keputusan Pemberian Bantuan Kepada Industri Kecil Menengah (Ikm) Pada Dinas Perindustrian Dan Perdagangan Provinsi Bengkulu Menggunakan Metode Topsis

Agung Kharisma Hidayah 1); Dwita Deslianti 2); Marhalim 3); Yozi Anggara 4)

¹⁾Program Studi Teknik Informatika, Fakultas Teknik, Universitas Muhammadiyah Bengkulu

²⁾ Program Studi Teknik Informatika, Fakultas Teknik, Universitas Muhammadiyah Bengkulu Email: ¹⁾ agungkharismahidayahumb@gmail.com; ²⁾ dwitadesliantiumb@gmail.com; ³⁾ marhalimumb@gmail.com; ⁴⁾yozianggara238@gmail.com

How to Cite:

Hidayah, A.K; Deslianti, D; Marhalim; Anggara, Y. (2023). Perancangan Sistem Pendukung Keputusan Pemberian Bantuan Kepada Industri Kecil Menengah (Ikm) Pada Dinas Perindustrian Dan Perdagangan Provinsi Bengkulu Menggunakan Metode Topsis. Jurnal Komputer, Informasi dan Teknologi, 3 (2). DOI: https://doi.org/10.53697/jkomitek.v3i2

ARTICLE HISTORY

Received [06 Juni 2023] Revised [10 November 2023] Accepted [12 Desember 2023]

KEYWORDS

Small and Medium Industry, SPK, TOPSIS

This is an open access article under the <u>CC-BY-SA</u> license

ABSTRAK

Dinas pertanian dan perdagangan (DISPERINDAG) Provinsi Bengkulu mempunyai fungsi untuk menyusun perencanaan program pemerintahan daerah Provinsi Bengkulu, salah satu program tersebut yaitu pemberian bantuan kepada industri kecil menengah di Provinsi Bengkulu. Permasalahan penelitian ini yaitu proses seleksi penentuan penerima bantuan tersebut. Proses seleksi ini masih dilakukan secara manual dengan menyeleksi satu persatu tiap dokumen IKM yang akan mendapatkan bantuan, hal ini tentu cukup rentan akan terjadinya kesalahan. Proses manual ini berakibat pada lamanya proses seleksi yang dilakukan. Hasil dari keputusan seleksi terkadang retan terhadap kertidak objektifan dari pihak DIPERINDAG Provinsi Bengkulu karena tidak adanya penentuan secara matematis dikarenakan keputusan semua bersumber dari manusia. Hasil dari penelitian ini telah dibuatkan sebuah Sistem Pendukung Keputusan (SPK) untuk mempermudah proses pengolahan data dan mempersingkat waktu penyelesaian sekaligus meningkatkan kualitas keputusan dalam menentukan prioritas penerima bantuan untuk mendapatkan hasil yang maksimal telah diterapkan pula metode TOPSIS. Dalam metode ini telah dilakukan perhitungan terhadap IKM yang menjadi calon penerima bantuan berdasarkan kriteria yang telah ditentukan berdasarkan hasil perhitungan didapatkan nilai akhir berupa rangking nilai IKM yang lebih diutamakan untuk diberikan bantuan.

ABSTRACT

The Department of Industry and Trade (DISPERINDAG) of Bengkulu Province has the function of preparing regional government program planning for Bengkulu Province, one of these programs is providing assistance to small and medium industries in Bengkulu Province. The problem of this research is the selection process for determining the recipient of the assistance. This selection process is still done manually by selecting one by one each IKM document that will receive assistance, this is certainly quite prone to errors. This manual process results in the length of the selection process being carried out. The results of selection decisions are sometimes vulnerable to non-objectivity from the Bengkulu Province DIPERINDAG because there is no mathematical determination because all decisions come from humans. The results of this study have created a Decision Support System (DSS) to simplify the data processing process and shorten the completion time while improving the quality of decisions in determining the priority of beneficiaries to get maximum results, the TOPSIS method has also been applied. In this method, a calculation has been carried out on the IKM which is a candidate for assistance based on predetermined criteria.

PENDAHULUAN

Sektor industri merupakan salah satu sektor ekonomi yang sedang berkembang di Indonesia sebagai sektor penggerak kemajuan sektor-sektor ekonomi lainya. Salah satu bentuk dari sektor industri yang ada di Indonesia yaitu sektor Industri Kecil Menengah. Industri kecil menengah atau disingkat IKM merupakan usaha perseorangan atau rumah tangga maupun suatu badan yang memiliki kegiatan usaha yang sama memperoduksi barang maupun jasa untuk diperdagangkan secara komersial (Andri, 2012). IKM menjadi industri yang sangat penting dalam membantu kemajuan perekonomian negara serta mambantu dalam penyerapan tenaga kerja. Dalam kegiatan produksi industri ini cukup bergantung pada bantuan pemerintah baik itu modal uang atau alat yang akan digunakan dalam memajukan industri tersebut.

Dinas Perindustrian Dan Perdagangan (DISPERINDAG) Provinsi Bengkulu mempunyai fungsi untuk menyusun perencanaan program pemerintahan daerah Provinsi Bengkulu, salah satu program tersebut yaitu pemberian bantuan kepada industri kecil menengah di Provinsi Bengkulu. Pemberian bantuan yang diberikan di fokuskan kepada IKM yang masuk kedalam pendataan yang memenuhi kriteria yang telah ditentukan DISPERINDAG. Pemberian bantuan tersebut diupayakan dapat merata kesemua industri kecil menengah di Provinsi Bengkulu.

DISPERINDAG Provinsi Bengkulu sering melakukan pemberian bantuan untuk industri kecil menengah (IKM) dalam implementasi yang telah dilakukan untuk tahap penentuan penerima bantuan memiliki kendala. Salah satu yang menjadi pemasalahannya yaitu proses seleksi penentuan penerima bantuan tersebut. Proses seleksi ini masih dilakukan secara manual dengan menyeleksi satu persatu tiap dokumen IKM yang akan mendapatkan bantuan, hal ini tentu cukup rentan akan terjadinya kesalahan berupa tertukarnya dokumen antara data IKM karena sulitnya mendata dokumen tersebut jika dilakukan satu-persatu. Hal tersebut memungkinan terjadi pemilihan keputusan akhir tidak yang tepat sasaran. Selain itu proses manual ini berakibat pada lamanya proses seleksi yang dilakukan. Hasil dari keputusan seleksi terkadang retan terhadap kertidak objektifan dari pihak DIPERINDAG Provinsi Bengkulu karena tidak adanya penentuan secara matematis dikarenakan keputusan semua bersumber dari manusia.

Salah satu solusi yang dapat membantu DIPERINDAG Provinsi Bengkulu dalam menangani hal tersebut adalah dengan membuat sebuah Sistem Pendukung Keputusan (SPK) yang memanfaatkan teknologi komputer, data yang diolah akan menjadi terkomputerisasi sehingga mempermudah proses pengolahan data dan mempersingkat waktu penyelesaian sekaligus meningkatkan kualitas keputusan dalam menentukan prioritas penerima bantuan. Maka dalam hal ini akan membantu pihak DIPERINDAG Provinsi Bengkulu dalam memprioritaskan IKM yang layak untuk menerima bantuan.

Untuk mendapatkan hasil yang maksimal selain menggunakan sistem yang telah terkomputerisasi akan sangat baik jika diterapkan pula sebuah metode yang cocok untuk sistem tersebut salah satunya adalah metode TOPSIS. Dalam metode ini nantinya akan dilakukan perhitungan terhadap IKM yang menjadi calon penerima bantuan berdasarkan kriteria yang telah ditentukan kemudian akan dilakukan perengkingan terhadap hasil dari perhitungan metode tersebut yang kemudian akan ditentukan jumlah IKM yang mendapat bantuan berdasarkan hasilnya. Metode TOPSIS merupakan metode sistem pendukung keputusan yang memiliki algoritma dengan pehitungan matematis yang cukup kompleks dengan tingkat akurasi hasil yang baik. Maka dari itu metode ini cocok untuk diterapkan kedalam sistem penentuan prioritas penerima bantuan bagi industri kecil menengah di Provinsi Bengkulu.

LANDASAN TEORI

Penelitian Terkait

Pertama penelitian dengan judul "Penerapan Metode Topsis Untuk Sistem Pendukung Keputusan Penentuan Keluarga Miskin Pada Desa Panca Karsa II", dalam penelitian tersebut mengenai Menentukan keluarga miskin adalah salah satu upaya pemerintah untuk melakukan intervensi pembangunan dalam bentuk bantuan terhadap keluarga miskin. Tepat sasaran adalah suatu keharusan sehingga benar-benar dapat berdaya guna bagi yang membutuhkan. Perkembangan penduduk Desa Panca Karsa II rata-rata 2% pertahun, sedangkan angka kelahiran dan kematian ratarata 1% pertahun. Mayoritas mata pencaharian penduduk adalah petani dan buruh tani. Hal ini disebabkan karena sudah turun temurun dan juga minimnya tingkat pendidikan. Model yang digunakan dalam sistem pendukung keputusan ini adalah FMADM dengan menggunakan Metode *TOPSIS*. Metode TOPSIS tersebut, diharapkan penilaian akan lebih tepat karena didasarkan pada nilai kriteria dan bobot yang sudah ditentukan sehingga akan mendapatkan hasil yang lebih akurat. Untuk itu peneliti mencoba membantu permasalahan tersebut di atas dengan membuatkan suatu sistem pendukung keputusan menggunakan Bahasa Pemrograman PHP dengan Database *MySQL*, sehingga Penerapan Metode TOPSIS untuk sistem ini dapat memberikan hasil yang maksimal dalam hal pengambilan keputusan (Irvan, 2017).

Kedua penelitian dengan judul "Penerapan Metode TOPSIS Untuk Mendukung Keputusan Pemilihan Pegawai Terbaik". Dalam penelitian tersebut menganai kualitas pegawai bagi perusahaan merupakan suatu permasalahan yang sangat penting. Salah satu cara untuk memacu semangat dan meningkatkan dedikasi serta kinerja pegawai adalah melakukan pemilihan pegawai terbaik. Sistem pendukung keputusan merupakan salah satu solusi untuk membantu memberikan rekomendasi keputusan dalam menentukan pegawai terbaik. Metode yang digunakan pada sistem pendukung keputusan ini adalah TOPSIS. Metode TOPSIS melakukan analisis dalam pengambilan keputusan terbaik dari sejumlah alternatif, menggunakan bobot masing-masing kriteria. Sistem pendukung keputusan pemilihan pegawai terbaik ini menggunakan 13 kriteria dengan bobot kriteria serta penilaian pada masing-masing pegawai diberikan langsung oleh pengambil keputusan. Dari hasil pengujian menggunakan TOPSIS, diperoleh hasil yang lebih objektif karena TOPSIS menggunakan prinsip bahwa alternatif terpilih harus mempunyai jarak terdekat dari solusi ideal positif dan jarak terpanjang dari solusi ideal negatif yang akan memberikann rekomendasi pemilihan pegawai terbaik (Yanitaherni, 2017).

Ketiga penelitian dengan judul "Metode TOPSIS Dalam Sistem Pendukung Keputusan Penentuan Penerima Beasiswa Di STMIK Pringsewu", penelitian ini berfokus mengenai pemberian bantuan terhadap mahasiswa. Mahasiswa yang memiliki pontensi namun tergolong kedalam status ekonomi yang rendah. STMIK Pringsewu berdiri sejak tahun 1995. Pada perguruan tinggi ini memiliki visi dan misi dapat menghasilkan mahasiswayang unggul dalam bidang teknologi informasi, dan mampu bersaing di era moderen dengan persaingan yang ketat. Dengan sistem pendukung keputusan penentuan penerimaan beasiswa dengan metode TOPSIS menemukan hasil jumlah tertinggi dari setiap kriteria yang telah ditentukan menyatakan bahwa alternative A dengan jumlah nilai 0,54. Ini dinyatakan bahwa Sistem Pendukung Keputusan Dapat Digunakan dalam Penentuan Penerimaan Beasiswadi perguruan tinggi lainya (Riki, 2019).

Dari ketiga penelitian tersebut dapat disimpulkan bahwa metode TOPSIS akan sangat berguna dalam sistem pengambilan keputuan selain itu penelitian-penelitian tersebut akan menjadi acuan dalam membuat sistem pada penelitian ini nantinya dengan menggunakan metode TOPSIS.

Sistem Pendukung Keputusan

Sistem Pendukung Keputusan (SPK) secara umum didefinisikan sebagai sebuah sistem yang mampu memberikan kemampuan baik kemampuan pemecahan masalah maupun kemampuan pemgkomunikasian untuk masalah semi-terstruktur. Secara khusus, SPK didefinisikan sebagai sebuah sistem yang mendukung kerja seorang manajer maupun sekelompok manajer dalam memecahkan masalah semi-terstruktur dengan cara memberikan informasi ataupun usulan menuju pada keputusan tertentu (Febrina, 2018).

Industri Kecil Menengah (IKM)

Definisi tentang Industri Kecil Menengah (IKM) sangat beragam di Indonesia, keberagaman ini disebabkan oleh pendefinisian IKM oleh pihak-pihak atau lembaga pemerintahan yang menggunakan konsep yang berbeda dalam mendefinisikan IKM (Andri, 2012).

Dinas Perindustrian dan Perdagangan (Disperindag) dalam RIP-IKM (2002-2004) mendefinisikan industri kecil sebagai kegiatan ekonomi yang dilakukan oleh perseorangan atau rumah tangga maupun suatu badan, bertujuan untuk memproduksi barang maupun jasa untuk diperdagangkan secara komersial, yang mempunyai nilai kekayaan bersih paling banyak 200 juta rupiah dan mempunyai nilai penjualan pertahun sebesar 1 milyar rupiah atau kurang. Sedangkan Industri menengah adalah kegiatan ekonomi yang dilakukan oleh perseorangan atau badan, bertujuan untuk memproduksi barang ataupun jasa untuk diperdagangkan secara komersial yang mempunyai nilai penjualan pertahun lebih besar dari 1 milyar rupiah namun kurang dari 50 milyar rupiah.

Metode TOPSIS (Technique For Order Preference By Similarity To Ideal Solution)

Masalah keputusan bukan hanya disebakan oleh faktor ketidakpastian atau ketidaksempurnaan informasi saja, faktor beragamnya kriteria pemilihan dan juga nilai bobot dari masing-masing kriteria merupakan suatu bentuk masalah keputusan yang sangat kompleks. Pada zaman sekarang ini, metodemetode pemecahan masalah multikriteria telah digunakan secara luas di berbagai bidang. Adapun salah satu metode yang dapat digunakan untuk mengatasi permasalahan multikriteria yaitu metode *Technique For Order Preference by Similarity to Ideal Solution* (TOPSIS) (Murni dan Bosker, 2018).

Bahasa Pemrograman PHP

PHP sendiri sebenarnya merupakan singkatan dari *HypertextPrepocessor*, yang merupkan sebuah bahasa *scripting* tingkat tinggi yang dipasang dokumen HTML. Berdasarakan penjelasan pengertian di

atas dapat disimpulkan bahwa PHP adalah bahasa pemrograman yang digunakan untuk menjalankan bahasa script web dan juga untuk membuat program aplikasi berbasis web (Betha, 2014).

Database

Secara umum database berarti koleksi data yang saling terkait. Secara praktis, basis data dianggap sebagai suatu penyusunan data yang tersetruktur yang disimpan dalam media pengingat (*hard disk*) yang tujuannya adalah agar data tersebut dapat diakses dengan mudah dan cepat. Sesungguhnya ada beberapa macam database, antara lain yaitu database hierarkis, database jaringan, dan database relasional (Abdul, 2015).

Diagram Konteks

Diaram konteks adalah keadaan sistem secara umum dan hubungan-hubungan sistem tersebut dengan komponen-komponen diluar sistem atau dengan sistem yang lain dapat digambarkan secara logika dengan diagram konteks (Context Diagram). Sebuah diagram sederhana yang menggambarkan hubungan antara entity luar, masukan dan keluaran dari sistem. Diagram konteks dipresentasikan dengan lingkaran tunggal yang mewakili keseluruhan sistem. Diagram yang terdiri dari suatu proses dan menggambarkan ruang lingkup suatu sistem. Diagram konteks merupakan DFD level yang paling atas yang hanya terdiri dari satu proses yang menggambarkan sistem atau program secara keseluruhan (Yakub, 2012).

Data Flow Diagram (DFD)

Data flow diagram (DFD) merupakan alat untuk membuat diagram yang serbaguna. Data flow diagram terdiri dari notasi penyimpanan data, proses, aliran data, dan sumber masukkan. DFD menampilkan kegiatan sistem lengkap dengan komponen-komponen yang menunjukkan secara jelas filefile yang dipakai, unsur sumber atau tujuan data, serta aliran data dari satu proses ke proses yang lainnya. DFD merupakan model dari sistem untuk menggambarkan pembagian sistem ke modul yang lebih kecil. Salah satu keuntungan menggunakan DFD adalah memudahkan pemakai atau *user* yang kurang menguasai bidang komputer untuk mengerti sistem yang akan dikerjakan (Yakub, 2012).

Entity Relations Diagram (ERD)

ERD merupakan suatu model jaringan yang menggunakan susunan data yang disimpan pada sistem secara abstrak. ERD juga menggambarkan hubungan antara satu entitas yang memiliki sejumlah atribut dengan entitas yang lainnya dalam suatu sistem yang terintergrasi (Yuniar, 2010).

Use Case Diagram

Use Case Diagram atau diagram use case merupakan pemodelan untuk menggambarkan kelakuan (behavior) sistem yang akan dibuat. Diagram use case mendeskripsikan sebuah interaksi antara satu atau lebih aktor dengan sistem yang akan dibuat. Dengan pengertian yang cepat, diagram use case digunakan untuk mengetahui fungsi apa saja yang ada di dalam sebuah sistem dan siapa saja yang berhak menggunakan fungsi-fungsi tersebut. Terdapat beberapa simbol dalam menggambarkan diagram use case, yaitu use cases, aktor dan relasi (Hendri, 2012).

Activity Diagram

Diagram aktivitas atau *activity diagram* menggambarkan *workflow* (aliran kerja) atau aktivitas dari sebuah sistem atau proses bisnis. Yang perlu diperhatikan disini adalah bahwa diagram aktivitas menggambarkan aktivitas sistem bukan apa yang dilakukan aktor, jadi aktivitas yang dapat dilakukan oleh sistem. Diagram aktivitas mendukung perilaku paralel (Hendri, 2012).

METODE PENELITIAN

Metode Pengembangan Sistem

Metode pengembangan yang digunakan dalam penelitian ini adalah metode *waterfall*. Metode ini melakukan pendekatan secara sistematis dan urtu mulai dari level kebutuhan sistem lalu menuju ke tahap analisis, desain, koding, percobaan atau perivikasi dan pemeliharaan. Disebut *waterfall* karena tahap demi tahap yang dilalui harus menunggu selesai tahap sebelumnya dan berjalan berurutan.

HASIL DAN PEMBAHASAN

Penentuan Data Alternatif

Dalam implementasi metode TOPSIS pada penelitian ini telah mengambil data yang akan diujin kedalam sistem menggunakan metode TOPSIS. Sampel tersebut berupa data industri kecil menengah dari DISPERINDAG Provinsi Bengkulu yang akan menjadi objek pengujian terhadap sistem yang telah dibuat. Pada tahap ini diambil 10 sampel data yang ada untuk dimasukkan ke dalam sistem yang telah dibuat. Alternati tersebut terdiri dari:

Tabel 1 Data Altenatif

No.	Nama Industri Kecil Menengah	Alamat	Bentuk Badan Usaha	Kode KBLI	Cabang Industri
1.	Alap Meubel	Jl. Sungai Rupat	PO	31001	Industri Furniture Dari Kayu
2.	Rizki Barokah	Gang Sumas 5 RT. 32 RW. 07	PO	14111	Industri Pakaian Jadi Konveksi dari Bahan Tekstil
3.	Global Teknik	Jl. RE. Martadinata	PO	25920	Jasa Industri Untuk Berbagai Pengerjaan Khusus Logam dan Barang Dari Logam
4.	Hikmah Mineral	Jl. Sumas	PO	11050	Industri Air Minuman dan Air mineral
5.	Penggilingan Ikan Bunda Mawar	Perumdam RT. 02 RW. 01	PO	10750	Industri Makanan dan masakan Olahan
6.	Galeh Jati Meubel	Jl. Martadinata	PO	31001	Industri Furniture Dari Kayu
7.	Bengkel Las Indra Teknik	Jl. RE. Martadinata	РО	25920	Jasa Industri Untuk Berbagai Pengerjaan Khusus Logam dan Barang Dari Logam
8.	Cahaya Teknik	Jl. Sumas	РО	33122	Jasa Reparasi 9.Mesin Untuk Keperluan Khusus
9.	Kazouku	Jl. Martadinata	PO	18111	Industri Percetakan Umum
10.	Sejahtera Aluminium	Jl. RE. Martadinata	РО	25920	Jasa Industri Untuk Berbagai Pengerjaan Khusus Logam dan Barang Dari Logam

Menentukan Kriteria

Pada tahap ini telah dilakukan penentuan kriteria dan bobot kriteria yang akan menjadi acuan dalam perhitungan metode TOPSIS. Kriteria tersebut ditentukan oleh pihak DISPERINDAG Provinsi Bengkulu terkait dengan penerima bantuan industri kecil menengah.

Tabel 2 Kriteria, bobot kriteria dan bobot preferensi

ode	Kriteria	Bobot Kriteria	Sub kriteria	Nilai
K1	Kriteria Jumlah Tenaga Kerja	20	Memilki tenaga kerja 1-2 orang	10
			Memilki tenaga kerja 3-4 orang	20
			Memilki tenaga kerja 5-6 orang	30
			Memilki tenaga kerja 7-8 orang	40
			Memilki tenaga kerja 9-10 orang Atau Lebih	50
K2	Kriteria Nilai Investasi	20	Nilai Investasi Rp. 10 Juta Atau Kurang	10
			Nilai Investasi Rp. 11 - 20 Juta	20
			Nilai Investasi Rp. 21 - 30 Juta	30
			Nilai Investasi Rp. 31 - 40 Juta	40
			Kapasitas Produksi 401 - 500 Atau Lebih	50
K3	Kriteria Kapasitas Produksi	20	Kapasitas Produksi 100 Atau Kurang	10
			Kapasitas Produksi 101 - 200	20
			Kapasitas Produksi 201 - 300	30
			Kapasitas Produksi 301 - 400	40
			Kapasitas Produksi 401 - 500 Atau Lebih	50
K4	Kriteria Nilai Produksi	20	Nilai Produksi Rp. 10 Juta Atau Kurang	10
			Nilai Produksi Rp. 11 - 20 Juta	20
			Nilai Produksi Rp. 21 - 30 Juta	30
			Nilai Produksi Rp. 31 - 40 Juta	40
			Nilai Produksi Rp. 41 - 50 Juta Atau Lebih	50
K5	Kriteria Nilai Bahan Baku Atau Produk	20	Nilai Bahan Baku Atau Produk Rp. 10 Juta Atau Kurang	10
			Nilai Bahan Baku Atau Produk Rp. 11 - 20 Juta	20
			Nilai Bahan Baku Atau Produk Rp. 21 - 30 Juta	30
			Nilai Bahan Baku Atau Produk Rp. 31 - 40 Juta	40
			Nilai Bahan Baku Atau Produk Rp. 41 - 50 Juta Atau Lebih	50
	Jumlah bobot	100		

Menentukan Nilai Awal Alternatif

Pada tahap ini dilakukakn penentuan nilai awal alternatif yaitu IKM dari data kualitatif pada lampiran data IKM terkait dengan kriteria penilaian lalu diubah menjadi data kuantitatif agar dapat dilakukan proses perhitungan metode TOPSIS.

Tabel 3 Nilai Awal Alternatif

No	Nama Industri Kecil Menengah	K1	K2	K 3	K4	K5
1	Kazouku	10	10	10	10	10
2	Galeh Jati Meubel	10	10	50	10	10
3	Bengkel Las Indra Teknik	20	10	20	20	10
4	Sejahtera Aluminium	10	10	10	10	10
5	Rizki Barokah	20	30	50	30	20
6	Alap Meubel	40	20	50	50	30
7	Hikmah Mineral	10	40	50	20	20
8	Global Teknik	30	10	50	30	20
9	Penggilingan Ikan Bunda Mawar		30	50	30	20
10	Cahaya Teknik	10	10	40	10	10

Menentuka Nilai Normalisasi.

ntuka Nilai Normalisasi. Pada tahap ini akan dilkukan pencarian nilai normalisasi dengan rumus $r_{ij} = \frac{x_{ij}}{x_{n=\sqrt{\sum_{i=1}^{m} x_{ij}^2}}}$. Pada proses awal dicari telebih dahulu nilai Xn pada setiap kriteria.

Tabel 4 Nilai Xn Pada Setiap Kriteri

Mencari Nilai XI	n Pada Setiap Kriteria	
K1	$\sqrt{\frac{(10)^2 + (10)^2 + (20)^2 + (10)^2 + (20)^2 + (40)^2 + (10)^2 + (30)^2 + (10)^2 + (10)^2}{}}$	= 62,44998
K2	$\sqrt{\frac{(10)^2 + (10)^2 + (10)^2 + (10)^2 + (30)^2 + (20)^2 + (40)^2 + (10)^2 + (30)^2 + (10)^2}{}}$	= 66,33249
КЗ	$\sqrt{\frac{(10)^2 + (50)^2 + (20)^2 + (10)^2 + (50)^2 + (50)^2 + (50)^2 + (50)^2 + (50)^2 + (40)^2}{}}$	= 131,14877
K4	$\sqrt{\frac{(10)^2 + (10)^2 + (20)^2 + (10)^2 + (30)^2 + (50)^2 + (20)^2 + (30)^2 + (30)^2 + (10)^2}{}}$	= 80
K5	$\sqrt{\frac{(10)^2 + (10)^2 + (10)^2 + (10)^2 + (20)^2 + (30)^2 + (20)^2 + (20)^2 + (20)^2 + (10)^2}{}}$	= 54,772255

Setelah mendapatkan nilai Xn kemudian dilakukan pencarian nilai normaliasi. Hasil perhitungan tersebut adalah sebagai berikut.

Tabel 5 Nilai Normalisas

Mencari Nilai Normalisasi Dengan Rumus						
$r_{ij} = rac{x_{ij}}{x_{n=\sqrt{\sum_{i=1}^{m} x_{ij}^2}}}$						
Nama Industri Kecil Menengah	K1	K2	K3	K4	K5	
Kazouku	$\frac{10}{62,44} = 0.16$	$\frac{10}{66,33} = 0.151$	$\frac{10}{131,14} = 0.076$	$\frac{10}{90} = 0.125$	$\frac{10}{54,77} = 0.183$	
Galeh Jati Meubel	$\frac{10}{62,44} = 0.16$	$\frac{10}{66,33} = 0.151$	$\frac{50}{131,14} = 0.381$	$\frac{10}{90} = 0.125$	$\frac{10}{54,77} = 0.183$	
Bengkel Las Indra Teknik	$\frac{20}{62,44} = 0.32$	$\frac{10}{66,33} = 0.151$	$\frac{20}{131,14} = 0.152$	$\frac{20}{90} = 0.25$	$\frac{10}{54,77} = 0.183$	
Sejahtera Aluminium	$\frac{10}{62,44} = 0.16$	$\frac{10}{66,33} = 0.151$	$\frac{10}{131,14} = 0.076$	$\frac{10}{90} = 0.125$	$\frac{10}{54,77} = 0.183$	
Rizki Barokah	$\frac{20}{62,44} = 0.32$	$\frac{30}{66,33} = 0.452$	$\frac{50}{131,14} = 0.381$	$\frac{30}{90} = 0.375$	$\frac{20}{54,77} = 0.365$	

Jurnal Komputer, informasi Dan Teknologi

Alap Meubel	$\frac{40}{62,44} = 0.641$	$\frac{20}{66,33} = 0.302$	$\frac{50}{131,14} = 0.381$	$\frac{50}{90} = 0.625$	$\frac{30}{54,77} = 0.548$
Hikmah Mineral	$\frac{10}{62,44} = 0.16$	$\frac{40}{66,33} = 0.603$	$\frac{50}{131,14} = 0.381$	$\frac{20}{90} = 0.25$	$\frac{20}{54,77} = 0.365$
Global Teknik	$\frac{30}{62,44} = 0.48$	$\frac{10}{66,33} = 0.151$	$\frac{50}{131,14} = 0.381$	$\frac{30}{90} = 0.375$	$\frac{20}{54,77} = 0.365$
Penggilingan Ikan Bunda Mawar	$\frac{10}{62,44} = 0.16$	$\frac{30}{66,33} = 0.452$	$\frac{50}{131,14} = 0.381$	$\frac{30}{90} = 0.375$	$\frac{20}{54,77} = 0.365$
Cahaya Teknik	$\frac{10}{62,44} = 0.16$	$\frac{10}{66,33} = 0.151$	$\frac{40}{131,14} = 0.305$	$\frac{10}{90} = 0.125$	$\frac{10}{54,77} = 0.183$

Pada tahap dilakukan pencari nilai normalisasi terbobot yaitu hasil perkalian antara bobot kriteria dengan nilai normalisasi. Hasil dari nilai normalisasi terbobot adalah sebagai berikut.

Menetukan Nilai Normalisasi Terbobot

Tabel 6 Normalisasi Terbobot

Nilai Normalisasi	Terbobot Deng	an Rumus v_{ij} = ι	v_i . r_{ij}		
Nama Industri Kecil Menengah	K1	K2	K3	K4	K5
Kazouku	20x0.160 = 3.20	20x0.151 = 3.02	20x0.076 = 1.52	20x0.125 = 2.50	20x0.183 = 3.65
Galeh Jati Meubel	20x0.160 = 3.20	20x0.151 = 3.02	20x0.381 = 7.62	20x0.125 = 2.50	20x0.183 = 3.65
Bengkel Las Indra Teknik	20x0.320 = 6.41	20x0.151 = 3.02	20x0.152 = 3.05	20x0.250 = 5	20x0.183 = 3.65
Sejahtera Aluminium	20x0.160 = 3.20	20x0.151 = 3.02	20x0.076 = 1.52	20x0.125 = 2.50	20x0.183 = 3.65
Rizki Barokah	20x0.320 = 6.41	20x0.452 = 9.05	20x0.381 = 7.62	20x0.375 = 7.50	20x0.365 = 7.30
Alap Meubel	20x0.641 = 12.81	20x0.302 = 6.03	20x0.381 = 7.62	20x0.625 = 12.50	20x0.548 = 10.95
Hikmah Mineral	20x0.160 = 3.2	20x0.603 = 12.06	20x0.381 = 7.62	20x0.250 = 5	20x0.365 = 7.30
Global Teknik	20x0.480 = 9.61	20x0.151 = 3.02	20x0.381 = 7.62	20x0.375 = 7.50	20x0.365 = 7.30
Penggilingan Ikan Bunda Mawar	20x0.160 = 3.2	20x0.452 = 9.05	20x0.381 = 7.62	20x0.375 = 7.50	20x0.365 = 7.30
Cahaya Teknik	20x0.160 = 3.2	20x0.151 = 3.02	20x0.305 = 6.10	20x0.125 = 2.50	20x0.183 = 3.65

Menentukan Nilai Solusi Ideal Positif Dan Negatif

Pada tahap ini di cari nilai solusi ideal positif yaitu dengan mencari nilai tertinggi dan nilai solusi ideal negatif untuk mencari nilai terendah dari hasil normalisasi terbobot. Hasil nilai tersebut dapat dilihat pada tabel dibawah ini

Tabel 7 Nilai Solusi Ideal Positif Dan Negatif

K2	K3	K4	K5		
Solusi Ideal Positif (A+)					
12.06	7.62	12.50	10.95		
Solusi Ideal Negatif (A-)					
3.02	1.52	2.50	3.65		
	sitif (A+) 12.06 gatif (A-)	sitif (A+) 12.06 7.62 gatif (A-)	sitif (A+) 12.06 7.62 12.50 gatif (A-)		

Menentukan Nilai Jarak Solusi Ideal Positif dan Negatif

Pada tahap ini dilakukan perhitungan mencari nilai jarak solusi ideal positif dan negatif berdasarkan dari nilai solusi ideal positif dan negatif dengan nilai normalisasi terbobot. Hasil dari nilai tersebut adalah sebagai berikut.

Tabel 8 Jarak Solusi Ideal Positif Dan Negatif

Tabel 8 Jarak Solusi Ideal Positif Mencari Jarak Solusi Ideal Positif		
	$\sqrt{\Sigma_{j=1}^n (v_{ij}-v_j^+)^2} \qquad \sqrt{\Sigma_{j=1}^n (v_j^+)^2}$	$-v_{ij})^2$
Nama Industri Kecil Menengah	Jarak Solusi Ideal Positif (D+)	Hasil
Kazouku	$ \sqrt{\frac{(12.81 - 3.2)^2 + (12.06 - 3.02)^2 + (7.62 - 1.52)^2}{(12.50 - 2.50)^2 + (10.95 - 3.65)^2} } $	19.09
Galeh Jati Meubel	$ \sqrt{\frac{(12.81 - 3.2)^2 + (12.06 - 3.02)^2 + (7.62 - 7.62)^2}{(12.50 - 2.50)^2 + (10.95 - 3.65)^2} } $	18.09
Bengkel Las Indra Teknik	$\sqrt{\frac{(12.81 - 6.41)^2 + (12.06 - 3.02)^2 + (7.62 - 3.05)^2}{(12.50 - 5)^2 + (10.95 - 3.65)^2}}$	15.91
Sejahtera Aluminium	$ \sqrt{\frac{(12.81 - 3.2)^2 + (12.06 - 3.02)^2 + (7.62 - 1.52)^2}{(12.50 - 2.50)^2 + (10.95 - 3.65)^2} } $	19.09
Rizki Barokah	$ \sqrt{\frac{(12.81 - 6.41)^2 + (12.06 - 9.05)^2 + (7.62 - 7.62)^2}{(12.50 - 7.50)^2 + (10.95 - 7.30)^2} } $	9.40
Alap Meubel	$\sqrt{\frac{(12.81 - 12.81)^2 + (12.06 - 6.03)^2 + (7.62 - 7.62)^2}{(12.50 - 12.50)^2 + (10.95 - 10.95)^2}}$	6.03
Hikmah Mineral	$ \sqrt{\frac{(12.81 - 3.2)^2 + (12.06 - 12.06)^2 + (7.62 - 7.62)^2}{(12.50 - 5)^2 + (10.95 - 7.30)^2} } $	12.72
Global Teknik	$ \sqrt{\frac{(12.81 - 9.61)^2 + (12.06 - 3.02)^2 + (7.62 - 7.62)^2}{(12.50 - 7.50)^2 + (10.95 - 7.30)^2} } $	11.41
Penggilingan Ikan Bunda Mawar	$ \sqrt{\frac{(12.81 - 3.2)^2 + (12.06 - 9.05)^2 + (7.62 - 7.62)^2}{(12.50 - 7.50)^2 + (10.95 - 7.30)^2}} $	11.82
Cahaya Teknik	$ \sqrt{\frac{(12.81 - 3.2)^2 + (12.06 - 3.02)^2 + (7.62 - 6.10)^2}{(12.50 - 2.50)^2 + (10.95 - 3.65)^2} } $	18.16
Mencari Jarak Solusi Ideal Negati	f Dengan Rumus	l .
$Si=$ $\sqrt{\Sigma_{j=1}^{n} (\nu_{ij} - \nu_{j}^{-})^{2}} $ atau $\sqrt{\Sigma_{j=1}^{n}}$	$(v_j^ v_{ij})^2$	
Nama Industri Kecil Menengah	Jarak Solusi Ideal Negatif (D-)	Hasil
Kazouku	$ \sqrt{ (3.2 - 3.2)^2 + (3.02 - 3.02)^2 + (1.52 - 1.52)^2 } $ $ (2.50 - 2.50)^2 + (3.65 - 3.65)^2 $	0.00
Galeh Jati Meubel	$\sqrt{\frac{(3.2 - 3.2)^2 + (3.02 - 3.02)^2 + (1.52 - 7.62)^2}{(2.50 - 2.50)^2 + (3.65 - 3.65)^2}}$	6.10
Bengkel Las Indra Teknik	$\sqrt{\frac{(3.2 - 6.41)^2 + (3.02 - 3.02)^2 + (1.52 - 3.05)^2}{(2.50 - 5)^2 + (3.65 - 3.65)^2}}$	4.35
Sejahtera Aluminium	$\sqrt{\frac{(3.2 - 3.2)^2 + (3.02 - 3.02)^2 + (1.52 - 1.52)^2}{(2.50 - 2.50)^2 + (3.65 - 3.65)^2}}$	0.00
Rizki Barokah	$\sqrt{\frac{(3.2 - 6.41)^2 + (3.02 - 9.05)^2 + (1.52 - 7.62)^2}{(2.50 - 7.50)^2 + (3.65 - 7.30)^2}}$	11.05
Alap Meubel	$\sqrt{(3.2 - 12.81)^2 + (3.02 - 6.03)^2 + (1.52 - 7.62)^2}$ $(2.50 - 12.50)^2 + (3.65 - 10.95)^2$	17.09

Jurnal Komputer, informasi Dan Teknologi

Hikmah Mineral	$(3.2 - 3.2)^2 + (3.02 - 12.06)^2 + (1.52 - 7.62)^2$ $(2.50 - 5)^2 + (3.65 - 7.30)^2$	11.77
Global Teknik	$ \sqrt{\frac{(3.2 - 9.61)^2 + (3.02 - 3.02)^2 + (1.52 - 7.62)^2}{(2.50 - 7.50)^2 + (3.65 - 7.30)^2} } $	10.80
Penggilingan Ikan Bunda Mawar	$ \sqrt{ \frac{(3.2 - 3.2)^2 + (3.02 - 9.05)^2 + (1.52 - 7.62)^2}{(2.50 - 7.50)^2 + (3.65 - 7.30)^2} } $	10.58
Cahaya Teknik	$ \sqrt{ \frac{(3.2 - 3.2)^2 + (3.02 - 3.02)^2 + (1.52 - 6.10)^2}{(2.50 - 2.50)^2 + (3.65 - 3.65)^2} } $	4.58

Menentukan Nilai Akhir

Tahap akhir yaitu menentukan nilai akhir dari perhitungan metode TOPSIS pada masing-masing alternatif. Nilai akhir ini didapat dengan menghitung kedekatan relatif terhadap soslusi ideal positif.

Tabel 9 Hasil Akhir Perhitungan TOPSIS

Menghitung kedekatan relatif terhadap solusi ideal positif :
$$c_i^+ = \frac{s_i^-}{(s_i^- + s_i^+)}$$

Nama Industri Kecil Menengah	Jarak Solusi Ideal Positif (D+)	Hasil
Kazouku	$\frac{0}{(0+19.09)}$	0.00
Galeh Jati Meubel	6.10 (6.10 + 18.09)	0.25
Bengkel Las Indra Teknik	4.35 (4.35 + 15.91)	0.21
Sejahtera Aluminium	0 (0+19.09)	0.00
Rizki Barokah	11.05 (11.05 + 9.40	0.54
Alap Meubel	17.09 (17.09 + 6.03)	0.74
Hikmah Mineral	11.77 (11.77 + 12.72)	0.48
Global Teknik	10.80 (10.80 + 11.41)	0.49
Penggilingan Ikan Bunda Mawar	$\frac{10.58}{(10.58 + 11.82)}$	0.47
Cahaya Teknik	4.58 (4.58 + 18.16)	0.20

Menentukan Perengkingan

Pada tahap ini nilai dari hasil perhitungan metode TOPSIS pada masing-masing alternatif akan dilakukan perengkingan untuk menentukan IKM yang layak mendapatkan bantuan dari DISPERINDAG Provinsi Bengkulu.

Tabel 10 Perengkingan Alternatif

No.	Nama Industri Kecil Menengah	Nilai Akhir
1	Alap Meubel	0.74
2	Rizki Barokah	0.54
3	Global Teknik	0.49
4	Hikmah Mineral	0.48
5	Penggilingan Ikan Bunda Mawar	0.47
6	Galeh Jati Meubel	0.25
7	Bengkel Las Indra Teknik	0.21
8	Cahaya Teknik	0.20
9	Kazouku	0.00
10	Sejahtera Aluminium	0.00

Dari hasil tersebut didapatlah hasil penilaian metode TOPSIS dapat disimpulkan bahwa IKM beranam Alap Maubel yang paling layak untuk mendapatkan bantuan. Namun hasil akhir dari penerima bantuan tersebut tetap menjadi keputusan final dari DISPERINDAG Provinsi Bengkulu untuk memberikan berapa banyak industri kecil menengah yang dapat menerima bantuan tersebut.

Pengujian Sistem

Proses pengujian sistem dilakukan dengan pengujian *blackbox*. Pengujian ini berfungsi untuk mengetahui seberapa baik program ini telah dibuat hingga bisa di implemantasikan. Pengujian ini dilakukan dengan menguji setiap proses input dan output dari sistem untuk melihat apakah masih ada kesalahan atau error didalam sistem.

Tabel 11 Pengujian *Blackbox*

Halaman Yang Di	Deteil Denguijen	Hasil Pengujian		
Uji	Detail Pengujian	Input	Output	Tampilan
Halaman Awal	Tampilan Keluaran Data	-	Tampilan halaman awal muncul	Tampilan muncul tidak error
Halaman Login	Tampilan keluaran data pada proses penginputan username dan password	Dapat menginput username dan passoword	Sistem dapat mengenali username dan password	Tampilan muncul tidak error
Halaman Menu Home	Tampilan keluaran data dan tombol beberapa menu	Tombol dapat digunakan	Tampilan halaman home muncul	Tampilan muncul tidak error
Halaman Menu Data Industri kecil menengah	Tampilan keluaran data, tombol tambah data, tombol hapus, tombol edit dan seacrh	Tombol dapat digunakan	Tabel dapat menampilkan data dari database	Tampilan muncul tidak error
Halaman Tambah Data Industri kecil menengah	Tampilan keluaran data, penginputan data, tombol penyimpanan dan tombol kembali	Dapat menginputkan data industri kecil menengah tombol dapat digunakan	-	Tampilan muncul tidak error
Halaman Menu TOPSIS	Tampilan keluaran data, tombol tambah data, tombol hapus dan tombol edit	Tombol dapat digunakan	Tabel data muncul menampilkan data dari database	Tampilan muncul tidak error
Halaman Tambah Nilai	Tampilan keluaran data, penginputan data, tombol penyimpanan dan tombol kembali	Dapat menginputkan data nilai tombol dapat digunakan	-	Tampilan muncul tidak error

Halaman Hasil Perhitungan Metode TOPSIS	Tampilan keluaran data dan perhitungan sistem	-	Hasil perhitungan muncul dan proses perhitungan sesuai dengan perhitungan pada metode TOPSIS	Tampilan muncul tidak error
Halaman Laporan	Tampilan keluaran data	-	Tabel muncul menampilkan data hasil penilaian TOPSIS dan data berurutan	Tampilan muncul tidak error
Halaman Menu Admin	Tampilan keluaran data, penginputan data, tombol penyimpanan dan tombol lihat tabel	Tombol dapat digunakan	Tabel data muncul menampilkan data dari database	Tampilan muncul tidak error
Halaman Tabel Admin	Tampilan keluaran data, tombol tambah data, tombol hapus, tombol edit dan seacrh	Dapat menginputkan data nilai tombol dapat digunakan	-	Tampilan muncul tidak error

KESIMPULAN DAN SARAN

Kesimpulan

- 1. Sistem pendukung keputusan ini mampu mengeatasi kelemahan-kelemahan proses terdahulu dan memberikan hasil yang akurat dalam penentuan penerima bantuan indistri kecil menengah.
- 2. Penerapan metode TOPSIS untuk sistem pendukung keputusan ini dapat memberikan hasil yang maksimal dalam hal pengambilan keputusan dengan cara mengurutkan alternatif IKM yang dapat menerima bantuan.
- 3. Hasil pengujian sistem terhadap program tersebut menujukkan bahwa program ini dapat digunakan untuk menjadi media pembantu untuk menentukan penerima IKM.

Saran

- 1. Pihak DISPERINDAG Provinsi Bengkulu diharapkan dapat menggunakan program ini terus menerus nantinya
- 2. Kepada pengembang yang ingin mengembangkan program ini dapat memberikan konten yang baru untuk menjadi perbaikan-perbaikan pada program ini nantinya

DAFTAR PUSTAKA

Abdul Kadir.2015.Belajar Database Menggunakan MySQL.Yogyakarta: Andi Offset

Andri Ratnasari.2012.Peranan Industri Kecil Menengah(IKM)Dalam Penyerapan Tenaga Kerja Di Kabupaten Ponorogo.Jurnal Ekonomi.Falkutas Ekonomi. Universitas Negeri Surabaya. Vol. 01. No. 02.PP. 1-17.

Betha Sidik. 2014. Pemrograman Web PHP. Bandung: Informatika.

Febrina Sari.2018.Metode Pengambilan Keputusan.Yogyakarta:Deepublish

Irvan Muzzakir.2017.Penerapan Metode Topsis Untuk Sistem Pendukung Keputusan Penentuan Keluarga Miskin Pada Desa Panca Karsa II. Jurnal Ilmiah Universitas Ichsan Gorontalo. Vol. 9. No. 3. PP. 1-8.

Murni Marbun & BoskerSinaga.2018.Buku Ajar Sistem Pendukung Keputusan. Medan: CV. Rudang Mayang.

Riki Renaldo.2019.Metode TOPSIS Dalam Sistem Pendukung Keputusan Penentuan Penerima Beasiswa Di STMIK Pringsewu. Jurnal Manajemen Informasi Dan Teknologi Universitas Bandar Lampung. Vol. 9. No. 1. PP.14-18.

Yakub. 2012. Pengantar Sistem Informasi. Yogyakarta: Graha Ilmu.

Yanitaherni.2017.Penerapan Metode TOPSIS Untuk Mendukung Keputusan Pemilihan Pegawai Terbaik. Yogyakarta: AKAKOM

Yuniar Supardi.2010.WebMy Profile Dengan Joomla1.5.X.Jakarta:PT. Alex Media Komputindo.