Analysis of the Impact of Interview-Based Feature Selection on the Performance of Machine Learning Algorithms in Mental Health Disorder Classification
DOI:
https://doi.org/10.53697/jkomitek.v4i2.2039Keywords:
Feature Selection, Mental Health, Machine learning, Random Forest, XGboostAbstract
Mental health issues in the workplace have become an increasingly important concern, particularly in the high-pressure environment of the information technology industry. This study aims to evaluate the impact of feature selection based on interviews on the performance of machine learning models in classifying mental health disorders. The dataset used is sourced from Open Sourcing Mental Illness (OSMI), which consists of various features related to employees' mental health conditions, previously used without feature selection in prior research. Through an interview with an experienced Human Capital professional with a psychological background, relevant features were selected based on domain expertise. Subsequently, machine learning models, namely Random Forest and XGBoost, were trained using two scenarios: without feature selection and with feature selection. The results of the study indicate that feature selection based on interviews can improve model accuracy by 1.67% for Random Forest and 0.67% for XGBoost. These findings emphasize the importance of integrating psychological insights into the data processing to produce more relevant and efficient models. This research provides practical contributions to assist companies in implementing early detection of mental health disorders effectively.
References
Alzghoul, H. (2024). Impact of Virtual Interviews on Pulmonary and Critical Care Fellowship Match An Analysis of National Data. ATS Scholar, 5(1), 122–132. https://doi.org/10.34197/ats-scholar.2023-0012OC
Ardhi, S. (2023, October 13). Kementerian Kesehatan Ungkap Kasus Bunuh Diri Meningkat Hingga 826 Kasus. Universitas Gadjah Mada. https://ugm.ac.id/id/berita/kementerian-kesehatan-ungkap-kasus-bunuh-diri-meningkat-hingga-826-kasus/
Ayuningtyas, D., Misnaniarti, & Rayhani, M. (2018). Analisis Situasi Kesehatan Mental pada Masyarakat di Indonesia dan Strategi Penanggulangannya. Jurnal Ilmu Kesehatan Masyarakat, 9(1), Article 1. https://doi.org/10.26553/jikm.2018.9.1.1-10
Cholissodin, I., Sutrisno, S., Soebroto, A. A., Hasanah, U., & Febiola, Y. I. (2020). AI, machine learning and deep learning. Fakultas Ilmu Komputer, Universitas Brawijaya, Malang. https://www.researchgate.net/profile/Imam-Cholissodin/publication/348003841_Buku_Ajar_AI_Machine_Learning_Deep_Learning/links/61cdd217da5d105e550a9a4a/Buku-Ajar-AI-Machine-Learning-Deep-Learning.pdf
Dachi, J. M. A. S., & Sitompul, P. (2023). Analisis Perbandingan Algoritma XGBoost dan Algoritma Random Forest Ensemble Learning pada Klasifikasi Keputusan Kredit. JURNAL RISET RUMPUN MATEMATIKA DAN ILMU PENGETAHUAN ALAM, 2(2), 87–103. https://doi.org/10.55606/jurrimipa.v2i2.1470
Danielson, E. C. (2024). Implementation Preparation Costs of Virtual Interview Training in Pre-Employment Transition Services: A Budget Impact Analysis. Journal of Special Education Technology, 39(1), 27–40. https://doi.org/10.1177/01626434231175372
Ebner, D. W. (2024). Trends in Colorectal Cancer Screening from the National Health Interview Survey: Analysis of the Impact of Different Modalities on Overall Screening Rates. Cancer Prevention Research, 17(6), 275–280. https://doi.org/10.1158/1940-6207.CAPR-23-0443
M., Taqiyuddin, A., Shalahuddin, A., & Quarina, Q. (2023). Menilik Isu dan Urgensi Kesehatan Mental Pekerja Indonesia. Jurnal Kajian, 1(1).
Garg, S., Sinha, S., Kar, A. K., & Mani, M. (2021). A review of machine learning applications in human resource management. International Journal of Productivity and Performance Management, 71(5), 1590–1610. https://doi.org/10.1108/IJPPM-08-2020-0427
Goff, M. (2024). Investigating the impact of primary care networks on continuity of care in English general practice: Analysis of interviews with patients and clinicians from a mixed methods study. Health Expectations, 27(2). https://doi.org/10.1111/hex.14032
Joses, S., Yulvida, D., & Rochimah, S. (2024). Pendekatan Metode Ensemble Learning untuk Prakiraan Cuaca menggunakan Soft Voting Classifier. Journal of Applied Computer Science and Technology, 5(1), Article 1. https://doi.org/10.52158/jacost.v5i1.741
Laksono, R. D., Nurjanah, N., Sukmawati, F., Junizar, J., & Judijanto, L. (2024). Pengantar Psikologi Umum. PT. Green Pustaka Indonesia.
Meilina, A. D. N., Kamila. (2024, November 29). Kemenkes Soroti Kesehatan Mental Pekerja Swasta hingga ASN, Singgung Beban Kerja—Nasional Katadata.co.id. https://katadata.co.id/berita/nasional/6749ec4bc40bb/kemenkes-soroti-kesehatan-mental-pekerja-swasta-hingga-asn-singgung-beban-kerja
Narciso, J. (2022). How does body mass index impact self-perceived health? A pan-European analysis of the European Health Interview Survey Wave 2. BMJ Nutrition, Prevention and Health, 5(2), 235–242. https://doi.org/10.1136/bmjnph-2022-000439
S., Nainggolan, A., & Sihombing, M. K. (2023). Penentuan Kelayakan Promosi Pegawai Menggunakan Algoritma Random Forest Classifier Dan Xgboost Classifier. Jurnal Tekinkom (Teknik Informasi Dan Komputer), 6(2), Article 2. https://doi.org/10.37600/tekinkom.v6i2.949
Smith, M. J. (2020). Costs of preparing to implement a virtual reality job interview training programme in a community mental health agency: A budget impact analysis. Journal of Evaluation in Clinical Practice, 26(4), 1188–1195. https://doi.org/10.1111/jep.13292
Ourbetterworld. (2019). Mental Health in Asia: The Numbers. https://www.ourbetterworld.org/series/mental-health/support-toolkit/mental-health-asia-numbers
Putri, A. W., Wibhawa, B., & Gutama, A. S. (2015). Kesehatan mental masyarakat Indonesia (pengetahuan, dan keterbukaan masyarakat terhadap gangguan kesehatan mental). Prosiding Penelitian Dan Pengabdian Kepada Masyarakat, 2(2), 252–258.
Rayadin, M. A., Musaruddin, M., Saputra, R. A., & Isnawaty, I. (2024). Implementasi Ensemble Learning Metode XGBoost dan Random Forest untuk Prediksi Waktu Penggantian Baterai Aki. BIOS : Jurnal Teknologi Informasi Dan Rekayasa Komputer, 5(2), Article 2. https://doi.org/10.37148/bios.v5i2.128
Yulianti, S. E. H., Soesanto, O., & Sukmawaty, Y. (2022). Penerapan Metode Extreme Gradient Boosting (XGBOOST) pada Klasifikasi Nasabah Kartu Kredit. Journal of Mathematics: Theory and Applications, 21–26.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Hendrick

This work is licensed under a Creative Commons Attribution 4.0 International License.