Ekstraksi Ciri Image Wajah Berdasarkan Ciri Warna Hue Saturation Value (HSV) dan Geometri
DOI:
https://doi.org/10.53697/jkomitek.v5i1.2472Keywords:
Ekstraksi Ciri, HSV, GeometriAbstract
Ekstraksi ciri wajah merupakan langkah krusial dalam pengenalan wajah, terutama dalam membedakan pola berdasarkan warna dan geometri. Warna menjadi salah satu aspek penting karena dapat digunakan untuk membedakan suatu citra dari citra lainnya dengan mengelompokkan pola berdasarkan ciri warna tersebut. Penelitian ini bertujuan untuk mengembangkan metode ekstraksi ciri wajah dengan memadukan analisis warna menggunakan ruang warna HSV (Hue, Saturation, Value) dan ekstraksi ciri geometri pada bagian mata, hidung, dan mulut. Metode penelitian dimulai dengan pengambilan gambar wajah dari tiga individu berbeda dengan posisi tampak depan menggunakan kamera handphone. Gambar yang diperoleh kemudian disimpan dan dikonversi dari format RGB ke ruang warna HSV untuk ekstraksi ciri warna. Rata-rata nilai hue, saturation, dan value pada setiap gambar digunakan sebagai ciri warna yang mewakili setiap wajah. Selanjutnya, dilakukan ekstraksi ciri geometri dengan mengukur jarak antar bagian wajah utama, yaitu mata, hidung, dan mulut, untuk memperoleh ciri geometris yang berbeda pada masing-masing individu. Hasil penelitian menunjukkan bahwa kombinasi ciri warna dan ciri geometri mampu menghasilkan identifikasi ciri wajah yang unik untuk setiap individu. Pendekatan ini memberikan dasar yang kuat dalam pengenalan wajah dengan memanfaatkan karakteristik warna dan struktur wajah secara simultan.
References
Acharya, T., & Ray, A. K. (2005). Image Processing: Principles and Applications. Dalam Image Processing: Principles and Applications. John Wiley & Sons. https://doi.org/10.1002/0471745790
AL Sigit Guntoro, Edy Julianto, & Djoko Budiyanto. (2022). Pengenalan Ekspresi Wajah Menggunakan Convolutional Neural Network. Jurnal Informatika Atma Jogja, 3(2), 155–160. https://doi.org/10.24002/jiaj.v3i2.6790
Changhui, Y. (2017). Overlapped fruit recognition for citrus harvesting robot in natural scenes. 2017 2nd International Conference on Robotics and Automation Engineering, ICRAE 2017, 398–402. https://doi.org/10.1109/ICRAE.2017.8291418
Chen, W. (2022). Algorithm for Locating and Detecting Parallel-edged Sewing Thread of Irregular Small Cloth. Chinese Control Conference (CCC), 6279–6285. https://doi.org/10.23919/CCC55666.2022.9902655
Flores-Rodríguez, K. L. (2020). Road Signs Segmentation Through Mobile Laser Scanner and Imagery. Lecture Notes in Computer Science, 12469, 376–389. https://doi.org/10.1007/978-3-030-60887-3_33
Guo, Y. (2019). Detection of cow mounting behavior using region geometry and optical flow characteristics. Computers and Electronics in Agriculture, 163. https://doi.org/10.1016/j.compag.2019.05.037
Hasugian, A. H., & Zufria, I. (2018). Perancangan Sistem Restorasi Citra Dengan Metode Image Inpainting. ALGORITMA: Jurnal Ilmu Komputer dan Informatika, 6341(November), 1.
Hu, E. (2016). Bleeding and Tumor Detection for Capsule Endoscopy Images Using Improved Geometric Feature. Journal of Medical and Biological Engineering, 36(3), 344–356. https://doi.org/10.1007/s40846-016-0138-8
Jing, L. (2021). Art Image Processing and Color Objective Evaluation Based on Multicolor Space Convolutional Neural Network. Computational Intelligence and Neuroscience, 2021. https://doi.org/10.1155/2021/4273963
Kuang, X. (2018). Real-Time detection and recognition of road traffic signs using MSER and random forests. International Journal of Online Engineering, 14(3), 34–51. https://doi.org/10.3991/ijoe.v14i03.7925
Kuang, X. (2018). Real-Time Detection and Recognition of Road Traffic Signs using MSER and Random Forests. International Journal of Interactive Mobile Technologies, 14(3), 34–51. https://doi.org/10.3991/ijoe.v14i03.7925
Li, D. C. (2022). Research on Semi-Automatic Extraction Method of Seismic Surface Ruptures Based on High-Resolution UAV Image: Taking the 2021 Ms7.4 Maduo Earthquake in Qinghai Province as an Example. Dizhen Dizhi, 44(6), 1484–1502. https://doi.org/10.3969/j.issn.0253-4967.2022.06.008
Miftahuddin, Y., Umaroh, S., & Karim, F. R. (2020). Perbandingan Metode Perhitungan Jarak Euclidean, Haversine, Dan Manhattan Dalam Penentuan Posisi Karyawan. Jurnal Tekno Insentif, 14(2), 69–77. https://doi.org/10.36787/jti.v14i2.270
Pasumarthi, N. (2016). An empirical study and comparative analysis of content based image retrieval (CBIR) techniques with various similarity measures. IET Conference Publications, 2016. https://doi.org/10.1049/cp.2016.1529
Reshma, S. R. (2017). Microscope image processing for TB diagnosis using shape features and ellipse fitting. 2017 IEEE International Conference on Signal Processing, Informatics, Communication and Energy Systems (SPICES 2017). https://doi.org/10.1109/SPICES.2017.8091342
Saha, J. (2017). Exploring the Scope of HSV Color Channels Towards Simple Shadow Contour Detection. Lecture Notes in Computer Science, 10597, 110–115. https://doi.org/10.1007/978-3-319-69900-4_14
Santoso, M. W. B., Wihandika, R. C., & Rahman, Muh. A. (2019). Ekstraksi Ciri untuk Klasifikasi Jenis Kelamin berbasis Citra Wajah menggunakan Metode Compass Local Binary Patterns. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 3(11), 10556–10563.
Siahaan, V., & Sianipar, R. H. (2020). Panduan praktis dan komplet Pemrosesan Citra Digital dengan Matlab. ANDI.
Sun, D. (2022). Geometric Feature Detection of Space Targets Based on Color Space. International Conference on Communication Technology Proceedings (ICCT), 1736–1739. https://doi.org/10.1109/ICCT56141.2022.10072520
Varma, S. L. (2018). Human skin detection using histogram processing and Gaussian Mixture Model based on color spaces. Proceedings of the International Conference on Intelligent Sustainable Systems (ICISS 2017), 116–120. https://doi.org/10.1109/ISS1.2017.8389349
Wang, H. (2019). Fast Edge Extraction Algorithm Based on HSV Color Space. Shanghai Jiaotong Daxue Xuebao / Journal of Shanghai Jiaotong University, 53(7), 765–772. https://doi.org/10.16183/j.cnki.jsjtu.2019.07.001
Wardhani, I. P., Putri, A. M., Widayati, S., Informasi, T., Sti, S. J., Bri, J., Dalam, R., Baru, K., Selatan, J., Informatika, T., Indonesia, I. T., Raya, J., Serpong, P., Selatan, T., & Ekstraksi, C. (2021). Algoritma Identifikasi Ciri Citra Pegunungan dengan Metode Copping. Jurnal Ilmiah Komputasi, 20(2), 283–289. https://doi.org/10.32409/jikstik.20.2.2763
Zhang, R. (2017). Method of Extracting Forewings Angle of 3D Pose for the Moth Based on Machine Vision. Linye Kexue / Scientia Silvae Sinicae, 53(11), 120–130. https://doi.org/10.11707/j.1001-7488.20171114
Zhao, L. (2018). Brake pad image classification algorithm based on color segmentation and information entropy weighted feature matching. Qinghua Daxue Xuebao / Journal of Tsinghua University, 58(6), 547–552. https://doi.org/10.16511/j.cnki.qhdxxb.2018.26.025
Zhu, L. (2017). Internet eggplant image retrieval method and system based on mixed features. Nongye Gongcheng Xuebao / Transactions of the Chinese Society of Agricultural Engineering, 33, 177–183. https://doi.org/10.11975/j.issn.1002-6819.2017.zl.027
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Ridho Surya Pangestu, Hari Purwadi, Agusma Wajiansyah

This work is licensed under a Creative Commons Attribution 4.0 International License.