Sentiment Analysis Related to Law No. 6 Of 2023 on the Employment Cluster Using the Bidirectional Long Short-Term Memory Algorithm

Authors

  • Anugra M Program Studi Teknik Informatika, Fakultas Ilmu Komputer, Universitas Esa Unggul
  • Munawar Program Studi Teknik Informatika, Fakultas Ilmu Komputer, Universitas Esa Unggul

DOI:

https://doi.org/10.53697/jkomitek.v4i2.2051

Keywords:

Sentiment Analysis, Cipta Kerja, Bi-LSTM

Abstract

The enactment of UU Cipta Kerja has triggered varied public responses, particularly concerning employment provisions like fixed-term employment (PKWT), the legalization of outsourcing, unfair severance pay, and ease of layoffs. Social media has become a primary platform for the public to share opinions on issues within the law’s employment cluster. This study employs sentiment analysis using the Bidirectional Long Short-Term Memory (Bi-LSTM) algorithm to understand public sentiment about UU Cipta Kerja and sentiment within its content. Bi-LSTM is chosen for its ability to capture temporal relationships and context in long texts, which aids in handling complex sentiment classification. The findings indicate varied public perceptions: neutral sentiment dominates issues like "PKWT" and "Minimum Wage" on Twitter (X), reflecting uncertainty. Positive sentiment appears around "Outsourcing" and "Minimum Wage" provisions, indicating perceived flexibility. Conversely, negative sentiment dominates issues like "Layoffs" and "Severance," on both social media and in UU Cipta Kerja content, signaling concerns over worker rights. The Bi-LSTM model achieved 70.15% accuracy for the Twitter dataset and 83.22% for the law’s content dataset.

References

Arifqi, T., Suarna, N., & Prihartono, W. (2024). Penggunaan Naive Bayes Dalam Menganalisis Sentimen Ulasan Aplikasi Mcdonald’s Di Indonesia. JATI (Jurnal Mahasiswa Teknik Informatika), 8(2), Article 2. https://doi.org/10.36040/jati.v8i2.8740

Aspri, M., Tsagkatakis, G., & Tsakalides, P. (2020). Distributed Training and Inference of Deep Learning Models for Multi-Modal Land Cover Classification. Remote Sensing, 12(17), Article 17. https://doi.org/10.3390/rs12172670

Chen, Q., & Sokolova, M. (2021). Specialists, Scientists, and Sentiments: Word2Vec and Doc2Vec in Analysis of Scientific and Medical Texts. SN Computer Science, 2(5), 414. https://doi.org/10.1007/s42979-021-00807-1

Citra R, F., Indriyani, F., & Rahadjeng, I. R. (2024). Klasifikasi Tumor Otak Berbasis Magnetic Resonance Imaging Menggunakan Algoritma Convolutional Neural Network. Digital Transformation Technology, 3(2), 918–924. https://doi.org/10.47709/digitech.v3i2.3469

Dauni, P., Ramdhani, M. A., Suryapratama, D. R., Jumadi, Zulfikar, W. B., & Fuadi, R. S. (2022). Twitter User Sentiment Analysis For RUU Omnibus Law Using Convolutional Neural Network. 2022 IEEE 8th International Conference on Computing, Engineering and Design (ICCED), 1–6. https://doi.org/10.1109/ICCED56140.2022.10010404

Hutto, C., & Gilbert, E. (2014). VADER: A Parsimonious Rule-Based Model for Sentiment Analysis of Social Media Text. Proceedings of the International AAAI Conference on Web and Social Media, 8(1), Article 1. https://doi.org/10.1609/icwsm.v8i1.14550

Iswaningsih, M. L., Budiartha, I. N. P., & Ujianti, N. M. P. (2021). Perlindungan Hukum Terhadap Tenaga Kerja Lokal dalam Undang-undang Nomor 11 Tahun 2020 tentang Omnibus Law Cipta Kerja. Jurnal Preferensi Hukum, 2(3), Article 3. https://doi.org/10.22225/jph.2.3.3986.478-484

Kolo, S. Y., & Supatman, S. (2024). Analisis Sentimen Terhadap Opini Masyarakat Terkait Perubahan Cuaca Di Indonesia Menggunakan Algoritma Support Vector Machine. JATI (Jurnal Mahasiswa Teknik Informatika), 8(2), Article 2. https://doi.org/10.36040/jati.v8i2.8988

Kurniawan, F. (2020). Problematika Pembentukan RUU Cipta Kerja Dengan Konsep Omnibus Law. Jurnal Panorama Hukum, 5(1), Article 1. https://doi.org/10.21067/jph.v5i1.4437

Matompo, O. S., & Izziyana, W. vivid. (2020). Konsep Omnibus Law Dan Permasalahan Ruu Cipta Kerja. RECHTSTAAT NIEUW, 5(1), Article 1. https://ejournal.unsa.ac.id/index.php/rechtstaat-niew/article/view/506

Nugroho, A., & Rilvani, E. (2023). Penerapan Metode Oversampling SMOTE Pada Algoritma Random Forest Untuk Prediksi Kebangkrutan Perusahaan. Techno. Com, 22(1). https://search.ebscohost.com/login.aspx?direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=14122693&AN=164068345&h=DscQNqI8urjjnYQhwBgRJn01b8IKXnXur1VhCm9uw8PlUdj2ucwMG4rYznny%2B5Lb4CrIEiBjD7P6FPQGBB623Q%3D%3D&crl=c

Nurhopipah, A., & Magnolia, C. (2023). Perbandingan Metode Resampling Pada Imbalanced Dataset Untuk Klasifikasi Komentar Program MBKM. Jurnal Publikasi Ilmu Komputer Dan Multimedia, 2(1), Article 1. https://doi.org/10.55606/jupikom.v2i1.862

Onan, A. (2022). Bidirectional convolutional recurrent neural network architecture with group-wise enhancement mechanism for text sentiment classification. Journal of King Saud University - Computer and Information Sciences, 34(5), 2098–2117. https://doi.org/10.1016/j.jksuci.2022.02.025

Patil, R., Boit, S., Gudivada, V., & Nandigam, J. (2023). A Survey of Text Representation and Embedding Techniques in NLP. IEEE Access, 11, 36120–36146. IEEE Access. https://doi.org/10.1109/ACCESS.2023.3266377

Romadhan, A. N., Utami, E., & Hartanto, A. D. (2023). Analisis Sentimen Opini Publik Menggunakan Metode BiLSTM Pada Media Sosial Twitter. Seminar Nasional Teknologi Informasi Dan Matematika (SEMIOTIKA), 2(1), 22–33. https://journal.itk.ac.id/index.php/semiotika/article/download/997/524

Sakti, R. E. (2023, January 16). Perppu Cipta Kerja, Kekhawatiran dan Harapan. kompas.id. https://www.kompas.id/baca/riset/2023/01/16/perppu-cipta-kerja-kekhawatiran-dan-harapan

Sandryan, M. K., Rahayudi, B., & Ratnawati, D. E. (2021). Analisis Sentimen Pada Media Sosial Twitter Terhadap Undang-Undang Cipta Kerja Menggunakan Algoritma Backpropagation dan Term Frequency-Inverse Document Frequency. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 5(2), Article 2.

Sarimole, F. M., & Ihsan, A. N. (2023). Analisis Sentimen Twitter Terhadap Uu Cipta Kerja Dengan Menggunakan Algoritma Naïve Bayes Dan Support Vector Machine. INTECOMS: Journal of Information Technology and Computer Science, 6(2), 822–829. https://doi.org/10.31539/intecoms.v6i2.7671

Situngkir, R. (2022). Urgensi Penerapan Omnibus law Untuk Menyelesaikan Permasalahan Pembentukan Regulasi Di Indonesia. Iuris Studia: Jurnal Kajian Hukum, 3(1), 1–8. https://doi.org/10.55357/is.v3i1.193

Wicaksono, A. (2023). Massa Buruh Geruduk MK-Istana Besok, Tuntut UU Ciptaker Dicabut. https://www.cnnindonesia.com/nasional/20230808175145-20-983530/massa-buruh-geruduk-mk-istana-besok-tuntut-uu-ciptaker-dicabut

Wijaya, T. N., Indriati, R., & Muzaki, M. N. (2021). Analisis Sentimen Opini Publik Tentang Undang-Undang Cipta Kerja Pada Twitter. Jambura Journal of Electrical and Electronics Engineering, 3(2), Article 2. https://doi.org/10.37905/jjeee.v3i2.10885

Downloads

Published

2024-12-10

How to Cite

M, A., & Munawar. (2024). Sentiment Analysis Related to Law No. 6 Of 2023 on the Employment Cluster Using the Bidirectional Long Short-Term Memory Algorithm. Jurnal Komputer, Informasi Dan Teknologi, 4(2), 14. https://doi.org/10.53697/jkomitek.v4i2.2051

Issue

Section

Articles

Similar Articles

1 2 3 4 5 6 > >> 

You may also start an advanced similarity search for this article.