Klasifikasi Ketidakhadiran di Tempat Kerja Menggunakan Metode Support Vector Machine
DOI:
https://doi.org/10.53697/jkomitek.v4i2.2618Keywords:
Ketidakhadiran Karyawan, Klasifikasi, Prediksi Ketidakhadiran, Pembelajaran MesinAbstract
Penelitian ini bertujuan untuk mengklasifikasikan ketidakhadiran karyawan di tempat kerja menggunakan metode Support Vector Machine (SVM), dengan menggunakan dataset yang mencakup informasi demografi, pekerjaan, dan faktor-faktor lain yang terkait dengan ketidakhadiran. Dataset yang digunakan berisi catatan ketidakhadiran karyawan sebuah perusahaan kurir di Brasil dari UCI Machine Learning. Penelitian ini mengimplementasikan model SVM dengan kernel Radial Basis Function (RBF), yang dipilih karena kemampuannya dalam menangani data non-linier. Hasil evaluasi model menunjukkan kinerja yang sangat baik, dengan AUC sebesar 0,995, akurasi mencapai 98,1%, dan skor F1 sebesar 0,981, yang menunjukkan keseimbangan yang sangat baik antara presisi dan ingatan. Model tersebut berhasil memprediksi sebagian besar ketidakhadiran karyawan secara akurat, dengan kesalahan prediksi yang minimal. Namun, masih ada beberapa kesalahan kecil dalam memprediksi ketidakhadiran, yang dapat diperbaiki dengan menyetel hiperparameter dan menambahkan fitur tambahan yang terkait dengan faktor-faktor yang memengaruhi ketidakhadiran. Secara keseluruhan, penelitian ini menunjukkan bahwa model SVM merupakan alat yang efektif dan efisien untuk memprediksi ketidakhadiran karyawan, dengan hasil yang dapat diterapkan dalam mengelola ketidakhadiran di organisasi.
References
Abd-Ellah, M. K. (2016). Classification of brain tumor MRIs using a kernel support vector machine. Communications in Computer and Information Science, 636, 151-160, ISSN 1865-0929, https://doi.org/10.1007/978-3-319-44672-1_13
Al-Hamadani, M. N. A. (2023). Classification and analysis of the MNIST dataset using PCA and SVM algorithms. Vojnotehnički Glasnik, 71(2), 221–238. https://doi.org/10.5937/vojtehg71-42689
Bargam, B. (2024). Potential of Support Vector Machine Fed by ERA5 for Predicting Daily Discharge in the High Atlas of Morocco. Advances in Science Technology and Innovation, 79-82, ISSN 2522-8714, https://doi.org/10.1007/978-3-031-47079-0_18
Basile, P. (2013). Super-sense tagging using support vector machines and distributional features. Lecture Notes in Computer Science Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics, 7689, 176-185, ISSN 0302-9743, https://doi.org/10.1007/978-3-642-35828-9_19
Cao, J. (2019). Adaptive Bad Pixel Correction Method for Interference-Modulated Images Based on Weighted Least Squares Support Vector Machines (WLS-SVM). Applied Spectroscopy, 73(4), 454-463, ISSN 0003-7028, https://doi.org/10.1177/0003702819830776
Das, P. (2020). sigFeature: Novel Significant Feature Selection Method for Classification of Gene Expression Data Using Support Vector Machine and t Statistic. Frontiers in Genetics, 11, ISSN 1664-8021, https://doi.org/10.3389/fgene.2020.00247
Du, K.-L., Jiang, B., Lu, J., Hua, J., & Swamy, M. N. S. (2024). Exploring Kernel Machines and Support Vector Machines: Principles, Techniques, and Future Directions. Mathematics, 12(24), 3935. https://doi.org/10.3390/math12243935
Jan, S.U. (2018). Performance Analysis of Support Vector Machine-Based Classifier for Spectrum Sensing in Cognitive Radio Networks. Proceedings 2018 International Conference on Cyber Enabled Distributed Computing and Knowledge Discovery Cyberc 2018, 385-389, https://doi.org/10.1109/CyberC.2018.00075
Nath, G., Wang, Y., Coursey, A., Saha, K. K., Prabhu, S., & Sengupta, S. (2022). Incorporating a Machine Learning Model into a Web-Based Administrative Decision Support Tool for Predicting Workplace Absenteeism. Information, 13(7), 320. https://doi.org/10.3390/info13070320
Nawata, K. (2024). Evaluation of physical and mental health conditions related to employees’ absenteeism. Frontiers in Public Health. https://doi.org/10.3389/fpubh.2023.1326334
Nuranisah (2020). Analysis of algorithm support vector machine learning and k-nearest neighbor in data accuracy. Iop Conference Series Materials Science and Engineering, 725(1), ISSN 1757-8981, https://doi.org/10.1088/1757-899X/725/1/012118
Rainio, O., Teuho, J., & Klén, R. (2024). Evaluation metrics and statistical tests for machine learning. Dental Science Reports, 14. https://doi.org/10.1038/s41598-024-56706-x
Rajath, J., & Pandita, D. (2022). Machine Learning as a Data Science Tool to Predict Absenteeism for Factory Workers. 261–265. https://doi.org/10.1109/ICDABI56818.2022.10041623
Ratnayake, V., & Udawatta, S. (2021). Influencing Factors of Absenteeism of a Small Scale Garment Factory (Case Study). Moratuwa Engineering Research Conference. https://doi.org/10.1109/MERCON52712.2021.9525775
Saji, P. (2022). An Efficient Method to Localize and Quantify Axial Displacement in Transformer Winding Using Support Vector Machines. 2022 IEEE Global Conference on Computing Power and Communication Technologies Globconpt 2022, https://doi.org/10.1109/GlobConPT57482.2022.9938221
Skorikov, M., Hussain, M., Khan, M. R., Akbar, M. K., Momen, S., Mohammed, N., & Nashin, T. (2020). Prediction of Absenteeism at Work using Data Mining Techniques. International Conference on Information Technology. https://doi.org/10.1109/ICITR51448.2020.9310913
Solarz, A. (2017). Automated novelty detection in the WISE survey with one-class support vector machines. Astronomy and Astrophysics, 606, ISSN 0004-6361, https://doi.org/10.1051/0004-6361/201730968
Traoré, A. (2024). Effect of Absenteeism on the Economic Performance of Small and Medium-sized Enterprises-SMEs. International Journal of Scientific Research and Management, 12(12), 8089–8096. https://doi.org/10.18535/ijsrm/v12i12.em07
Tuppad, A., & Patil, S. D. (2023). Data Pre-processing Issues in Medical Data Classification. Journal of Advanced Zoology, 44(S6), 1079–1084. https://doi.org/10.17762/jaz.v44is6.2361
Wang, M. (2014). Energy field filling of neic broadband radiated energy catalogue based on support vector machine regression model. Applied Mechanics and Materials, 687, 1514-1517, ISSN 1660-9336, https://doi.org/10.4028/www.scientific.net/AMM.687-691.1514
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Natasya Lexbert Sumeisey, Titik Misriati, Imam Nawawi

This work is licensed under a Creative Commons Attribution 4.0 International License.