Klasifikasi Ketidakhadiran di Tempat Kerja Menggunakan Metode Support Vector Machine

Authors

DOI:

https://doi.org/10.53697/jkomitek.v4i2.2618

Keywords:

Ketidakhadiran Karyawan, Klasifikasi, Prediksi Ketidakhadiran, Pembelajaran Mesin

Abstract

Penelitian ini bertujuan untuk mengklasifikasikan ketidakhadiran karyawan di tempat kerja menggunakan metode Support Vector Machine (SVM), dengan menggunakan dataset yang mencakup informasi demografi, pekerjaan, dan faktor-faktor lain yang terkait dengan ketidakhadiran. Dataset yang digunakan berisi catatan ketidakhadiran karyawan sebuah perusahaan kurir di Brasil dari UCI Machine Learning. Penelitian ini mengimplementasikan model SVM dengan kernel Radial Basis Function (RBF), yang dipilih karena kemampuannya dalam menangani data non-linier. Hasil evaluasi model menunjukkan kinerja yang sangat baik, dengan AUC sebesar 0,995, akurasi mencapai 98,1%, dan skor F1 sebesar 0,981, yang menunjukkan keseimbangan yang sangat baik antara presisi dan ingatan. Model tersebut berhasil memprediksi sebagian besar ketidakhadiran karyawan secara akurat, dengan kesalahan prediksi yang minimal. Namun, masih ada beberapa kesalahan kecil dalam memprediksi ketidakhadiran, yang dapat diperbaiki dengan menyetel hiperparameter dan menambahkan fitur tambahan yang terkait dengan faktor-faktor yang memengaruhi ketidakhadiran. Secara keseluruhan, penelitian ini menunjukkan bahwa model SVM merupakan alat yang efektif dan efisien untuk memprediksi ketidakhadiran karyawan, dengan hasil yang dapat diterapkan dalam mengelola ketidakhadiran di organisasi.

References

Abd-Ellah, M. K. (2016). Classification of brain tumor MRIs using a kernel support vector machine. Communications in Computer and Information Science, 636, 151-160, ISSN 1865-0929, https://doi.org/10.1007/978-3-319-44672-1_13

Al-Hamadani, M. N. A. (2023). Classification and analysis of the MNIST dataset using PCA and SVM algorithms. Vojnotehnički Glasnik, 71(2), 221–238. https://doi.org/10.5937/vojtehg71-42689

Bargam, B. (2024). Potential of Support Vector Machine Fed by ERA5 for Predicting Daily Discharge in the High Atlas of Morocco. Advances in Science Technology and Innovation, 79-82, ISSN 2522-8714, https://doi.org/10.1007/978-3-031-47079-0_18

Basile, P. (2013). Super-sense tagging using support vector machines and distributional features. Lecture Notes in Computer Science Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics, 7689, 176-185, ISSN 0302-9743, https://doi.org/10.1007/978-3-642-35828-9_19

Cao, J. (2019). Adaptive Bad Pixel Correction Method for Interference-Modulated Images Based on Weighted Least Squares Support Vector Machines (WLS-SVM). Applied Spectroscopy, 73(4), 454-463, ISSN 0003-7028, https://doi.org/10.1177/0003702819830776

Das, P. (2020). sigFeature: Novel Significant Feature Selection Method for Classification of Gene Expression Data Using Support Vector Machine and t Statistic. Frontiers in Genetics, 11, ISSN 1664-8021, https://doi.org/10.3389/fgene.2020.00247

Du, K.-L., Jiang, B., Lu, J., Hua, J., & Swamy, M. N. S. (2024). Exploring Kernel Machines and Support Vector Machines: Principles, Techniques, and Future Directions. Mathematics, 12(24), 3935. https://doi.org/10.3390/math12243935

Jan, S.U. (2018). Performance Analysis of Support Vector Machine-Based Classifier for Spectrum Sensing in Cognitive Radio Networks. Proceedings 2018 International Conference on Cyber Enabled Distributed Computing and Knowledge Discovery Cyberc 2018, 385-389, https://doi.org/10.1109/CyberC.2018.00075

Nath, G., Wang, Y., Coursey, A., Saha, K. K., Prabhu, S., & Sengupta, S. (2022). Incorporating a Machine Learning Model into a Web-Based Administrative Decision Support Tool for Predicting Workplace Absenteeism. Information, 13(7), 320. https://doi.org/10.3390/info13070320

Nawata, K. (2024). Evaluation of physical and mental health conditions related to employees’ absenteeism. Frontiers in Public Health. https://doi.org/10.3389/fpubh.2023.1326334

Nuranisah (2020). Analysis of algorithm support vector machine learning and k-nearest neighbor in data accuracy. Iop Conference Series Materials Science and Engineering, 725(1), ISSN 1757-8981, https://doi.org/10.1088/1757-899X/725/1/012118

Rainio, O., Teuho, J., & Klén, R. (2024). Evaluation metrics and statistical tests for machine learning. Dental Science Reports, 14. https://doi.org/10.1038/s41598-024-56706-x

Rajath, J., & Pandita, D. (2022). Machine Learning as a Data Science Tool to Predict Absenteeism for Factory Workers. 261–265. https://doi.org/10.1109/ICDABI56818.2022.10041623

Ratnayake, V., & Udawatta, S. (2021). Influencing Factors of Absenteeism of a Small Scale Garment Factory (Case Study). Moratuwa Engineering Research Conference. https://doi.org/10.1109/MERCON52712.2021.9525775

Saji, P. (2022). An Efficient Method to Localize and Quantify Axial Displacement in Transformer Winding Using Support Vector Machines. 2022 IEEE Global Conference on Computing Power and Communication Technologies Globconpt 2022, https://doi.org/10.1109/GlobConPT57482.2022.9938221

Skorikov, M., Hussain, M., Khan, M. R., Akbar, M. K., Momen, S., Mohammed, N., & Nashin, T. (2020). Prediction of Absenteeism at Work using Data Mining Techniques. International Conference on Information Technology. https://doi.org/10.1109/ICITR51448.2020.9310913

Solarz, A. (2017). Automated novelty detection in the WISE survey with one-class support vector machines. Astronomy and Astrophysics, 606, ISSN 0004-6361, https://doi.org/10.1051/0004-6361/201730968

Traoré, A. (2024). Effect of Absenteeism on the Economic Performance of Small and Medium-sized Enterprises-SMEs. International Journal of Scientific Research and Management, 12(12), 8089–8096. https://doi.org/10.18535/ijsrm/v12i12.em07

Tuppad, A., & Patil, S. D. (2023). Data Pre-processing Issues in Medical Data Classification. Journal of Advanced Zoology, 44(S6), 1079–1084. https://doi.org/10.17762/jaz.v44is6.2361

Wang, M. (2014). Energy field filling of neic broadband radiated energy catalogue based on support vector machine regression model. Applied Mechanics and Materials, 687, 1514-1517, ISSN 1660-9336, https://doi.org/10.4028/www.scientific.net/AMM.687-691.1514

Downloads

Published

2024-12-23

How to Cite

Sumeisey, N., Misriati, T., & Nawawi, I. (2024). Klasifikasi Ketidakhadiran di Tempat Kerja Menggunakan Metode Support Vector Machine. Jurnal Komputer, Informasi Dan Teknologi, 4(2), 12. https://doi.org/10.53697/jkomitek.v4i2.2618

Issue

Section

Articles

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.